Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 17 de 17
Filtre
Ajouter des filtres

Base de données
Type de document
Gamme d'année
1.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.12.15.21267858

Résumé

The Omicron B.1.1.529 SARS-CoV-2 variant was first detected in late November 2021 and has since spread to multiple countries worldwide. We model the potential consequences of the Omicron variant on SARS-CoV-2 transmission and health outcomes in England between December 2021 and April 2022, using a deterministic compartmental model fitted to epidemiological data from March 2020 onwards. Because of uncertainty around the characteristics of Omicron, we explore scenarios varying the extent of Omicron's immune escape and the effectiveness of COVID-19 booster vaccinations against Omicron, assuming the level of Omicron's transmissibility relative to Delta to match the growth in observed S gene target failure data in England. We consider strategies for the re-introduction of control measures in response to projected surges in transmission, as well as scenarios varying the uptake and speed of COVID-19 booster vaccinations and the rate of Omicron's introduction into the population. These results suggest that Omicron has the potential to cause substantial surges in cases, hospital admissions and deaths in populations with high levels of immunity, including England. The reintroduction of additional non-pharmaceutical interventions may be required to prevent hospital admissions exceeding the levels seen in England during the previous peak in winter 2020-2021.


Sujets)
COVID-19
2.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.11.22.21266584

Résumé

England has experienced a heavy burden of COVID-19, with high infection levels observed throughout the summer months of 2021. Alongside the emergence of evidence suggesting that COVID-19 vaccine protection wanes over time, booster vaccinations began for individuals aged 50 and above in September 2021. Using a model fitted to 18 months of epidemiological data, we project potential dynamics of SARS-CoV-2 transmission in England to September 2022. We consider key uncertainties including behavioural change, waning vaccine protection, strategies for vaccination, and the reintroduction of public health and social measures. We project the current wave of transmission will peak in Autumn 2021, with low levels of transmission in early 2022. The extent to which SARS-CoV-2 transmission resurges in 2022 depends largely on assumptions around waning vaccine protection and booster vaccinations. Widespread booster vaccinations or the reimposition of mild public health and social measures such as work-from-home policies could largely mitigate the wave of COVID-19 transmission projected to occur in England in Spring/Summer 2022.


Sujets)
COVID-19
3.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.06.15.21258924

Résumé

IntroductionIn countries with weak surveillance systems confirmed COVID-19 deaths are likely to underestimate the death toll of the pandemic. Many countries also have incomplete vital registration systems, hampering excess mortality estimation. Here, we fitted a dynamic transmission model to satellite imagery data on burial patterns in Mogadishu, Somalia during 2020 to estimate the date of introduction, transmissibility and other epidemiologic characteristics of SARS-CoV-2 in this low-income, crisis-affected setting. MethodsWe performed Markov chain Monte Carlo (MCMC) fitting with an age-structured compartmental COVID-19 model to provide median estimates and credible intervals for the date of introduction, the basic reproduction number (R0) and the effect of non-pharmaceutical interventions in Mogadishu up to September 2020. ResultsUnder the assumption that excess deaths in Mogadishu February-September 2020 were directly attributable to SARS-CoV-2 infection we arrived at median estimates of October-November 2019 for the date of introduction and low R0 estimates (1.3-1.5) stemming from the early and slow rise of excess deaths. The effect of control measures on transmissibility appeared small. ConclusionSubject to study assumptions, a very early SARS-CoV-2 introduction event may have occurred in Somalia. Estimated transmissibility in the first epidemic wave was lower than observed in European settings.


Sujets)
COVID-19
4.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.05.27.21257032

Résumé

We hypothesised that cross-protection from seasonal epidemics of human coronaviruses (HCoVs) could have affected SARS-CoV-2 transmission, including generating reduced susceptibility in children. To determine what the pre-pandemic distribution of immunity to HCoVs was, we fitted a mathematical model to 6 years of seasonal coronavirus surveillance data from England and Wales. We estimated a duration of immunity to seasonal HCoVs of 7.3 years (95%CI 6.8 - 7.9) and show that, while cross-protection between HCoV and SARS-CoV-2 may contribute to the age distribution, it is insufficient to explain the age pattern of SARS-CoV-2 infections in the first wave of the pandemic in England and Wales. Projections from our model illustrate how different strengths of cross-protection between circulating coronaviruses could determine the frequency and magnitude of SARS-CoV-2 epidemics over the coming decade, as well as the potential impact of cross-protection on future seasonal coronavirus transmission.


Sujets)
COVID-19 , Syndrome respiratoire aigu sévère
5.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.05.17.21257315

Résumé

Background COVID-19 outbreaks are still occurring in English care homes despite the non-pharmaceutical interventions (NPIs) in place. Methods We developed a stochastic compartmental model to simulate the spread of SARS-CoV-2 within an English care home. We quantified the outbreak risk under the NPIs already in place, the role of community prevalence in driving outbreaks, and the relative contribution of all importation routes into the care home. We also considered the potential impact of additional control measures, namely: increasing staff and resident testing frequency, using lateral flow antigen testing (LFD) tests instead of PCR, enhancing infection prevention and control (IPC), increasing the proportion of residents isolated, shortening the delay to isolation, improving the effectiveness of isolation, restricting visitors and limiting staff to working in one care home. Findings The model suggests that importation of SARS-CoV-2 by staff, from the community, is the main driver of outbreaks, that importation by visitors or from hospitals is rare, and that the past testing strategy (monthly testing of residents and daily testing of staff by PCR) likely provides negligible benefit in preventing outbreaks. Daily staff testing by LFD was 39% (95% 18-55%) effective in preventing outbreaks at 30 days compared to no testing. Interpretation Increasing the frequency of testing in staff and enhancing IPC are important to preventing importations to the care home. Further work is needed to understand the impact of vaccination in this population, which is likely to be very effective in preventing outbreaks. Funding The National Institute for Health Research, European Union Horizon 2020, Canadian Institutes of Health Research, French National Research Agency, UK Medical Research Council. The World Health Organisation funded the development of the COS-LTCF Shiny application.


Sujets)
COVID-19
6.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.02.25.21252433

Résumé

Objectives To compare approaches for obtaining relative and absolute estimates of risk of 28-day COVID-19 mortality for adults in the general population of England in the context of changing levels of circulating infection. Design Three designs were compared. (A) case-cohort which does not explicitly account for the time-changing prevalence of COVID-19 infection, (B) 28-day landmarking, a series of sequential overlapping sub-studies incorporating time-updating proxy measures of the prevalence of infection, and (C) daily landmarking. Regression models were fitted to predict 28-day COVID-19 mortality. Setting Working on behalf of NHS England, we used clinical data from adult patients from all regions of England held in the TPP SystmOne electronic health record system, linked to Office for National Statistics (ONS) mortality data, using the OpenSAFELY platform. Participants Eligible participants were adults aged 18 or over, registered at a general practice using TPP software on 1st March 2020 with recorded sex, postcode and ethnicity. 11,972,947 individuals were included, and 7,999 participants experienced a COVID-19 related death. The study period lasted 100 days, ending 8th June 2020. Predictors A range of demographic characteristics and comorbidities were used as potential predictors. Local infection prevalence was estimated with three proxies: modelled based on local prevalence and other key factors; rate of A&E COVID-19 related attendances; and rate of suspected COVID-19 cases in primary care. Main outcome measures COVID-19 related death. Results All models discriminated well between patients who did and did not experience COVID-19 related death, with C-statistics ranging from 0.92-0.94. Accurate estimates of absolute risk required data on local infection prevalence, with modelled estimates providing the best performance. Conclusions Reliable estimates of absolute risk need to incorporate changing local prevalence of infection. Simple models can provide very good discrimination and may simplify implementation of risk prediction tools in practice.


Sujets)
COVID-19
7.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.02.24.21252338

Résumé

Background Multiple COVID-19 vaccines appear to be safe and efficacious, but only high-income countries have the resources to procure sufficient vaccine doses for most of their eligible populations. The World Health Organization has published guidelines for vaccine prioritisation, but most vaccine impact projections have focused on high-income countries, and few incorporate economic considerations. To address this evidence gap, we projected the health and economic impact of different vaccination scenarios in Sindh province, Pakistan (population: 48 million). Methods We fitted a compartmental transmission model to COVID-19 cases and deaths in Sindh from 30 April to 15 September 2020 using varying assumptions about the timing of the first case and the duration of infection-induced immunity. We then projected cases and deaths over 10 years under different vaccine scenarios. Finally, we combined these projections with a detailed economic model to estimate incremental costs (from healthcare and partial societal perspectives), disability adjusted life years (DALYs), and cost-effectiveness for each scenario. Findings A one-year vaccination campaign using an infection-blocking vaccine at $3/dose with 70% efficacy and 2.5 year duration of protection is projected to avert around 0.93 (95% Credible Interval: 0.91, 1.0) million cases, 7.3 (95% CrI: 7.2, 7.4) thousand deaths and 85.1 (95% CrI: 84.6, 86.8) thousand DALYs, and be net cost saving from the health system perspective. However, paying a high price for vaccination ($10/dose) may not be cost-effective. Vaccinating the older (65+) population first would prevent slightly more deaths and a similar number of cases as vaccinating everyone aged 15+ at the same time, at similar cost-effectiveness. Interpretation COVID-19 vaccination can have a considerable health impact, and is likely to be cost-effective if more optimistic vaccine scenarios apply. Preventing severe disease is an important contributor to this impact, but the advantage of focusing initially on older, high-risk populations may be smaller in generally younger populations where many people have already been infected, typical of many low- and -middle income countries, as long as vaccination gives good protection against infection as well as disease.


Sujets)
COVID-19 , Mort
8.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.02.01.21250959

Résumé

VOC 202012/01, a SARS-CoV-2 variant first detected in the United Kingdom in September 2020, has spread to multiple countries worldwide. Several studies have established that this novel variant is more transmissible than preexisting variants of SARS-CoV-2, but have not identified whether the new variant leads to any change in disease severity. We analyse a large database of SARS-CoV-2 community test results and COVID-19 deaths for England, representing approximately 47% of all SARS-CoV-2 community tests and 7% of COVID-19 deaths in England from 1 September 2020 to 22 January 2021. Fortuitously, these SARS-CoV-2 tests can identify VOC 202012/01 because mutations in this lineage prevent PCR amplification of the spike gene target (S gene target failure, SGTF). We estimate that the hazard of death among SGTF cases is 30% (95% CI 9-56%) higher than among non-SGTF cases after adjustment for age, sex, ethnicity, deprivation level, care home residence, local authority of residence and date of test. In absolute terms, this increased hazard of death corresponds to the risk of death for a male aged 55-69 increasing from 0.56% to 0.73% (95% CI 0.60-0.86%) over the 28 days following a positive SARS-CoV-2 test in the community. Correcting for misclassification of SGTF, we estimate a 35% (12-64%) higher hazard of death associated with VOC 202012/01. Our analysis suggests that VOC 202012/01 is not only more transmissible than preexisting SARS-CoV-2 variants but may also cause more severe illness.


Sujets)
COVID-19 , Mort
9.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.12.24.20248822

Résumé

A novel SARS-CoV-2 variant, VOC 202012/01 (lineage B.1.1.7), emerged in southeast England in November 2020 and is rapidly spreading towards fixation. Using a variety of statistical and dynamic modelling approaches, we estimate that this variant has a 43-90% (range of 95% credible intervals 38-130%) higher reproduction number than preexisting variants. A fitted two-strain dynamic transmission model shows that VOC 202012/01 will lead to large resurgences of COVID-19 cases. Without stringent control measures, including limited closure of educational institutions and a greatly accelerated vaccine roll-out, COVID-19 hospitalisations and deaths across England in 2021 will exceed those in 2020. Concerningly, VOC 202012/01 has spread globally and exhibits a similar transmission increase (59-74%) in Denmark, Switzerland, and the United States.


Sujets)
COVID-19
10.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.11.11.20220962

Résumé

Background: Short-term forecasts of infectious disease can create situational awareness and inform planning for outbreak response. Here, we report on multi-model forecasts of Covid-19 in the UK that were generated at regular intervals starting at the end of March 2020, in order to monitor expected healthcare utilisation and population impacts in real time. Methods: We evaluated the performance of individual model forecasts generated between 24 March and 14 July 2020, using a variety of metrics including the weighted interval score as well as metrics that assess the calibration, sharpness, bias and absolute error of forecasts separately. We further combined the predictions from individual models to ensemble forecasts using a simple mean as well as a quantile regression average that aimed to maximise performance. We further compared model performance to a null model of no change. Results: In most cases, individual models performed better than the null model, and ensembles models were well calibrated and performed comparatively to the best individual models. The quantile regression average did not noticeably outperform the mean ensemble. Conclusions: Ensembles of multi-model forecasts can inform the policy response to the Covid-19 pandemic by assessing future resource needs and expected population impact of morbidity and mortality.


Sujets)
COVID-19 , Maladies transmissibles
11.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.07.22.20159772

Résumé

Mathematical models have played a key role in understanding the spread of directly-transmissible infectious diseases such as Coronavirus Disease 2019 (COVID-19), as well as the effectiveness of public health responses. As the risk of contracting directly-transmitted infections depends on who interacts with whom, mathematical models often use contact matrices to characterise the spread of infectious pathogens. These contact matrices are usually generated from diary-based contact surveys. However, the majority of places in the world do not have representative empirical contact studies, so synthetic contact matrices have been constructed using more widely available setting-specific survey data on household, school, classroom, and workplace composition combined with empirical data on contact patterns in Europe. In 2017, the largest set of synthetic contact matrices to date were published for 152 geographical locations. In this study, we update these matrices with the most recent data and extend our analysis to 177 geographical locations. Due to the observed geographic differences within countries, we also quantify contact patterns in rural and urban settings where data is available. Further, we compare both the 2017 and 2020 synthetic matrices to out-of-sample empirically-constructed contact matrices, and explore the effects of using both the empirical and synthetic contact matrices when modelling physical distancing interventions for the COVID-19 pandemic. We found that the synthetic contact matrices reproduce the main traits of the contact patterns in the empirically-constructed contact matrices. Models parameterised with the empirical and synthetic matrices generated similar findings with few differences observed in age groups where the empirical matrices have missing or aggregated age groups. This finding means that synthetic contact matrices may be used in modelling outbreaks in settings for which empirical studies have yet to be conducted.


Sujets)
COVID-19
12.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.06.05.20123448

Résumé

BackgroundDuring the Covid-19 lockdown, contact clustering in social bubbles may allow extending contacts beyond the household at minimal additional risk and hence has been considered as part of modified lockdown policy or a gradual lockdown exit strategy. We estimated the impact of such strategies on epidemic and mortality risk using the UK as a case study. MethodsWe used an individual based model for a synthetic population similar to the UK, that is stratified into transmission risks from the community, within the household and from other households in the same social bubble. The base case considers a situation where non-essential shops and schools are closed, the secondary household attack rate is 20% and the initial reproduction number is 0.8. We simulate a number of strategies including variations of social bubbles, i.e. the forming of exclusive pairs of households, for particular subsets of households (households including children and single occupancy households), as well as for all households. We test the sensitivity of the results to a range of alternative model assumptions and parameters. ResultsClustering contacts outside the household into exclusive social bubbles is an effective strategy of increasing contacts while limiting some of the associated increase in epidemic risk. In the base case scenario social bubbles reduced cases and fatalities by 17% compared to an unclustered increase of contacts. We find that if all households were to form social bubbles the reproduction number would likely increase to 1.1 and therefore beyond the epidemic threshold of one. However, strategies that allow households with young children or single occupancy households to form social bubbles only increased the reproduction number by less than 10%. The corresponding increase in morbidity and mortality is proportional to the increase in the epidemic risk but is largely focussed in older adults independently of whether these are included in the social bubbles. ConclusionsSocial bubbles can be an effective way of extending contacts beyond the household limiting the increase in epidemic risk, if managed appropriately.


Sujets)
COVID-19
13.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.05.20.20108126

Résumé

ImportanceThe degree to which children and young people are infected by and transmit the SARS-CoV-2 virus is unclear. The role of children and young people in transmission of SARS-CoV-2 is dependent on susceptibility, symptoms, viral load, social contact patterns and behaviour. ObjectiveWe undertook a rapid systematic review to address the question "What is the susceptibility to and transmission of SARS-CoV-2 by children and adolescents compared with adults?" Data sourcesWe searched PubMed and medRxiv up to 28 July 2020 and identified 13,926 studies, with additional studies identified through handsearching of cited references and professional contacts. Study SelectionWe included studies which provided data on the prevalence of SARS-CoV-2 in children and young people (<20 years) compared with adults derived from contact-tracing or population-screening. We excluded single household studies. Data extraction and SynthesisWe followed PRISMA guidelines for abstracting data, independently by 2 reviewers. Quality was assessed using a critical appraisal checklist for prevalence studies. Random effects meta-analysis was undertaken. Main OutcomesSecondary infection rate (contact-tracing studies) or prevalence or seroprevalence (population-screening studies) amongst children and young people compared with adults. Results32 studies met inclusion criteria; 18 contact-tracing and 14 population-screening. The pooled odds ratio of being an infected contact in children compared with adults was 0.56 (0.37, 0.85) with substantial heterogeneity (95%). Three school contact tracing studies found minimal transmission by child or teacher index cases. Findings from population-screening studies were heterogenous and were not suitable for meta-analysis. The majority of studies were consistent with lower seroprevalence in children compared with adults, although seroprevalence in adolescents appeared similar to adults. ConclusionsThere is preliminary evidence that children and young people have lower susceptibility to SARS-CoV-2, with a 43% lower odds of being an infected contact. There is weak evidence that children and young people play a lesser role in transmission of SARS-CoV-2 at a population level. Our study provides no information on the infectivity of children. Key pointsO_ST_ABSQuestionC_ST_ABSWhat is the evidence on the susceptibility and transmission of children and young people to SARS-CoV-2 in comparison with adults? FindingsIn this systematic review and meta-analysis, children and young people under 18-20 years had an 435 lower odds of secondary infection of with SARS-CoV-2 compared to adults 20 years plus, a significant difference. This finding was most marked in children under 12-14 years. Data were insufficient to conclude whether transmission of SARS-CoV-2 by children is lower than by adults. MeaningWe found preliminary evidence that children have a lower susceptibility for SARS-CoV-2 infection compared with adults, although data for adolescents is less clear. The role that children and young people play in transmission of this pandemic remains unclear.


Sujets)
COVID-19
14.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.05.06.20092734

Résumé

Background. Coronavirus disease 2019 (COVID-19) epidemics strain health systems and households. Health systems in Africa and South Asia may be particularly at risk due to potential high prevalence of risk factors for severe disease, large household sizes and limited healthcare capacity. Methods. We investigated the impact of an unmitigated COVID-19 epidemic on health system resources and costs, and household costs, in Karachi, Delhi, Nairobi, Addis Ababa and Johannesburg. We adapted a dynamic model of SARS-CoV-2 transmission and disease to capture country-specific demography and contact patterns. The epidemiological model was then integrated into an economic framework that captured city-specific health systems and household resource use. Findings. The cities severely lack intensive care beds, healthcare workers and financial resources to meet demand during an unmitigated COVID-19 epidemic. A highly mitigated COVID-19 epidemic, under optimistic assumptions, may avoid overwhelming hospital bed capacity in some cities, but not critical care capacity. Interpretation. Viable mitigation strategies encompassing a mix of responses need to be established to expand healthcare capacity, reduce peak demand for healthcare resources, minimise progression to critical care and shield those at greatest risk of severe disease.


Sujets)
COVID-19
15.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.04.27.20081711

Résumé

BackgroundThe health impact of COVID-19 may differ in African settings as compared to countries in Europe or China due to demographic, epidemiological, environmental and socio-economic factors. We evaluated strategies to reduce SARS-CoV-2 burden in African countries, so as to support decisions that balance minimising mortality, protecting health services and safeguarding livelihoods. MethodsWe used a Susceptible-Exposed-Infectious-Recovered mathematical model, stratified by age, to predict the evolution of COVID-19 epidemics in three countries representing a range of age distributions in Africa (from oldest to youngest average age: Mauritius, Nigeria and Niger), under various effectiveness assumptions for combinations of different non-pharmaceutical interventions: self-isolation of symptomatic people, physical distancing, and shielding (physical isolation) of the high-risk population. We adapted model parameters to better represent uncertainty about what might be expected in African populations, in particular by shifting the distribution of severity risk towards younger ages and increasing the case-fatality ratio. ResultsWe predicted median clinical attack rates over the first 12 months of 17% (Niger) to 39% (Mauritius), peaking at 2-4 months, if epidemics were unmitigated. Self-isolation while symptomatic had a maximum impact of about 30% on reducing severe cases, while the impact of physical distancing varied widely depending on percent contact reduction and R0. The effect of shielding high-risk people, e.g. by rehousing them in physical isolation, was sensitive mainly to residual contact with low-risk people, and to a lesser extent to contact among shielded individuals. Response strategies incorporating self-isolation of symptomatic individuals, moderate physical distancing and high uptake of shielding reduced predicted peak bed demand by 46% to 54% and mortality by 60% to 75%. Lockdowns delayed epidemics by about 3 months. Estimates were sensitive to differences in age-specific social mixing patterns, as published in the literature. DiscussionIn African settings, as elsewhere, current evidence suggests large COVID-19 epidemics are expected. However, African countries have fewer means to suppress transmission and manage cases. We found that self-isolation of symptomatic persons and general physical distancing are unlikely to avert very large epidemics, unless distancing takes the form of stringent lockdown measures. However, both interventions help to mitigate the epidemic. Shielding of high-risk individuals can reduce health service demand and, even more markedly, mortality if it features high uptake and low contact of shielded and unshielded people, with no increase in contact among shielded people. Strategies combining self-isolation, moderate physical distancing and shielding will probably achieve substantial reductions in mortality in African countries. Temporary lockdowns, where socioeconomically acceptable, can help gain crucial time for planning and expanding health service capacity.


Sujets)
COVID-19
16.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.04.01.20049908

Résumé

Background Non-pharmaceutical interventions have been implemented to reduce transmission of SARS-CoV-2 in the UK. Projecting the size of an unmitigated epidemic and the potential effect of different control measures has been critical to support evidence-based policymaking during the early stages of the epidemic. Methods We used a stochastic age-structured transmission model to explore a range of intervention scenarios, including the introduction of school closures, social distancing, shielding of elderly groups, self-isolation of symptomatic cases, and extreme "lockdown"-type restrictions. We simulated different durations of interventions and triggers for introduction, as well as combinations of interventions. For each scenario, we projected estimated new cases over time, patients requiring inpatient and critical care (intensive care unit, ICU) treatment, and deaths. Findings We found that mitigation measures aimed at reducing transmission would likely have decreased the reproduction number, but not sufficiently to prevent ICU demand from exceeding NHS availability. To keep ICU bed demand below capacity in the model, more extreme restrictions were necessary. In a scenario where "lockdown"-type interventions were put in place to reduce transmission, these interventions would need to be in place for a large proportion of the coming year in order to prevent healthcare demand exceeding availability. Interpretation The characteristics of SARS-CoV-2 mean that extreme measures are likely required to bring the epidemic under control and to prevent very large numbers of deaths and an excess of demand on hospital beds, especially those in ICUs.


Sujets)
COVID-19
17.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.03.24.20043018

Résumé

The COVID-19 pandemic has shown a markedly low proportion of cases among children. Age disparities in observed cases could be explained by children having lower susceptibility to infection, lower propensity to show clinical symptoms, or both. We evaluate these possibilities by fitting an age-structured mathematical model to epidemic data from six countries. We estimate that clinical symptoms occur in 25% (95% CrI: 19-32%) of infections in 10-19-year-olds, rising to 76% (68-82%) in over-70s, and that susceptibility to infection in under-20s is approximately half that of older adults. Accordingly, we find that interventions aimed at children may have a relatively small impact on total cases, particularly if the transmissibility of subclinical infections is low. The age-specific clinical fraction and susceptibility we have estimated has implications for the expected global burden of COVID-19 because of demographic differences across settings: in younger populations, the expected clinical attack rate would be lower, although it is likely that comorbidities in low-income countries will affect disease severity. Without effective control measures, regions with older populations may see disproportionally more clinical cases, particularly in the later stages of the pandemic.


Sujets)
COVID-19
SÉLECTION CITATIONS
Détails de la recherche